
User’s Manual∗ for the Expanded

Coordinate-Free Geometric Programming System

William J.R. Longabaugh

March 13, 1992

1 Lists

Lists (actually variable-sized arrays) are provided as the primary way to pass
a variable number of objects to and from functions. Because the semantics of
lists are that they store and return actual copies of the list elements, instead of
using pointers to elements, they are not implemented using inheritance from a
base class.

1.1 ScalarList

Constructors

ScalarList(int n)

Builds a list of length n, with each entry initialized to 0.0.

ScalarList(Scalar s, int n)

Builds a list of length n, with each entry initialized to s. CAUTION:
Note that it is very easy to confuse this constructor with the one that
takes two scalars as arguments.

ScalarList(Scalar s)

ScalarList(Scalar s1, Scalar s2)

ScalarList(Scalar s1, Scalar s2, Scalar s3)

ScalarList(Scalar s1, Scalar s2, Scalar s3, Scalar s4)

Each builds a list and initializes it with the specified values.

∗This “manual” only gives the briefest description for functions in the system. For

more complete treatment, consult William J. R. Longabaugh, “An Expanded System for

Coordinate-Free Geometric Programming”, master’s thesis, University of Washington, 1992.

1



Interrogation and Access

int Length(void)

Returns the length of the list.

Scalar& operator[](int n)

Returns a reference to the nth scalar in the list (using zero-based
indexing).

Concatenation and Duplication

ScalarList operator+(ScalarList& l)

Concatenates the list l on the end of this list and returns the resulting
list.

ScalarList operator*(int i)

Duplicates this list i times, concatenates the copies, and returns the
resulting list.

Miscellaneous

ScalarList(void)

ScalarList(ScalarList& t)

ScalarList& operator=(ScalarList& t)

~ScalarList()

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

1.2 IntList

Constructors

IntList(int listsize)

Builds a list of length listsize, with each entry initialized to 0.

IntList(int element, int listsize)

Builds a list of length listsize, with each entry initialized to element.

IntList(int element1, int element2, int element3)

IntList(int element1, int element2, int element3, int element4)

Note that some shortcut constructors cannot be implemented due
to ambiguity with the previously defined constructors. The given
constructors each builds a list and initializes it with the specified
values.

2



Interrogation and Access

int Length(void)

Returns the length of the list.

int& operator[](int n)

Returns a reference to the nth integer in the list (using zero-based
indexing).

Concatenation and Duplication

IntList operator+(IntList& l)

Concatenates the list l on the end of this list and returns the resulting
list.

IntList operator*(int i)

Duplicates this list i times, concatenates the copies, and returns the
resulting list.

Miscellaneous

IntList(void)

IntList(IntList& t)

IntList& operator=(IntList& t)

~IntList()

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

1.3 GeObList

Constructors

GeObList(int n)

Builds a list of length n, with each entry initialized to NULL GEOB.

GeObList(GeOb& g, int n)

Builds a list of length n, with each entry initialized to g.

GeObList(GeOb& m)

GeObList(GeOb& m1, GeOb& m2)

GeObList(GeOb& m1, GeOb& m2, GeOb& m3)

GeObList(GeOb& m1, GeOb& m2, GeOb& m3, GeOb& m4)

Each builds a list and initializes it with the specified objects.

3



Interrogation and Access

int Length(void)

Returns the length of the list.

GeOb& operator[](int n)

Returns the nth GeOb in the list (using zero-based indexing).

Concatenation and Duplication

GeObList operator+(GeObList& g)

Concatenates the list g on the end of this list and returns the result-
ing list.

GeObList operator*(int s)

Duplicates this list s times, concatenates the copies, and returns the
resulting list.

Miscellaneous

GeObList(void)

GeObList(GeObList& t)

GeObList& operator=(GeObList& t)

~GeObList()

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

1.4 SpaceList

Constructors

SpaceList(int n)

Builds a list of length n, with each entry initialized to NULL SPACE.

SpaceList(Space& g, int n)

Builds a list of length n, with each entry initialized to g.

SpaceList(Space& m)

SpaceList(Space& m1, Space& m2)

SpaceList(Space& m1, Space& m2, Space& m3)

SpaceList(Space& m1, Space& m2, Space& m3, Space& m4)

Each builds a list and initializes it with the specified spaces.

4



Interrogation and Access

int Length(void)

Returns the length of the list.

Space& operator[](int n)

Returns a reference to the nth space in the list (using zero-based
indexing).

Concatenation and Duplication

SpaceList operator+(SpaceList& g)

Concatenates the list g on the end of this list and returns the result-
ing list.

SpaceList operator*(int s)

Duplicates this list s times, concatenates the copies, and returns the
resulting list.

Miscellaneous

SpaceList(void)

SpaceList(SpaceList& t)

SpaceList& operator=(SpaceList& t)

~SpaceList()

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

1.5 BasisList

Constructors

BasisList(int n)

Builds a list of length n, with each entry initialized to NULL BASIS.

BasisList(Basis& g, int n)

Builds a list of length n, with each entry initialized to g.

BasisList(Basis& m)

BasisList(Basis& m1, Basis& m2)

BasisList(Basis& m1, Basis& m2, Basis& m3)

BasisList(Basis& m1, Basis& m2, Basis& m3, Basis& m4)

Each builds a list and initializes it with the specified bases.

5



Interrogation and Access

int Length(void)

Returns the length of the list.

Basis& operator[](int n)

Returns the nth basis in the list (using zero-based indexing).

Concatenation and Duplication

BasisList operator+(BasisList& g)

Concatenates the list g on the end of this list and returns the result-
ing list.

BasisList operator*(int s)

Duplicates this list s times, concatenates the copies, and returns the
resulting list.

Miscellaneous

BasisList(void)

BasisList(BasisList& t)

BasisList& operator=(BasisList& t)

~BasisList()

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

2 Spaces

2.1 Member Functions for the Base Class Space

Interrogation Functions

int Dim(void)

Returns the dimension of the space.

char* Name(char* buf)

Fills in the specified buffer with the debug name of the space, and
returns a pointer to the buffer.

SpaceType Holds(void)

6



Returns the type of space currently held by the space.

Basis StdBasis(void)

Returns the “standard basis” for the space.

SRel SpaceRelation(Space& s)

Returns a tag that says how space s is related to this space.

SRel ThisSpaceIs(void)

Returns a tag that gives the position of this space in the six-space
set.

Boolean HasSpace(SRel s)

Returns TRUE if there exists a space in the six-space set that sits in
relation s to this space. Since spaces are created lazily, the function
returns FALSE if the space has not been created yet.

Space GetSpace(SRel s)

Returns the space that sits in relation s to this space.

AffineMap AffineMapTo(SRel s)

Returns the affine map to the space that sits in relation s to this
space, if it exists. Only valid if this space is an affine, linearization,
or projective completion space.

ProjectiveMap ProjectiveMapTo(SRel s)

Returns the projective map to the space that sits in relation s to
this space, if it exists. Not valid if this space is not a linearization
or projective completion space.

LinearMap LinearMapTo(SRel s)

Returns the linear map to the space that sits in relation s to this
space, if it exists. Not valid if this space is not a linearization or
tangent space.

VSpace Dual(void)

Returns the dual space to this space. Only valid if this space is a
vector space.

Simplex StdSimplex(void)

Returns the “standard simplex” for this space. Only valid if this
space is an affine space.

7



Boolean IsEuclidean(void)

Returns TRUE if this space is a Euclidean space, FALSE otherwise.

MLM InnerProduct(void)

Returns the inner product for this space. Only valid if this space is
a Euclidean vector space.

MLM CrossProduct(void)

Returns the cross product for this space. Only valid if this space is
a Euclidean vector space.

GeObList PtsAtInfinity(void)

Returns a list of points that span the set of points at infinity. The list
will be empty unless this space is a projective space with a standard
affine subset.

SubSet FullSet(void)

Returns a subset that contains all objects in the space.

PSubSet FullProjSet(void)

Returns a projective subset containing all the projective points or
vector equivalence classes in a space. Not valid for affine spaces.

ASubSet StdAffineSubset(void)

Returns the standard affine subset for a space.

GeObType NativeType(void)

Returns a tag indicating what the native type of object is for a space
(e.g. Vectors for a vector space that is not a tangent space, AVectors
for tangent spaces, PPoints for projective spaces).

Comparison Operators

Boolean operator==(Space& s)

Returns TRUE if and only if the space s is the same as this space.
Two distinct spaces with the same cartesian product structure are
not considered equal.

Boolean operator!=(Space& s)

Returns TRUE if and only if the space s is not the same as this
space.

8



Cartesian Product Operations

Space operator[](int n)

Returns the nth component space of a cartesian product space. In-
dexing is zero-based.

int CPSpaceSize(void)

Returns the number of component spaces in a cartesian product
space. Simple spaces return 1.

Manual Stitching Operations

Space SetSpace(Space& s, Map& m)

Used to manually stitch together spaces into a six-space set. Space
s is stitched to this space using map m, which must be a map from
this space to s.

Miscellaneous

Space(void)

Space(Space& v)

Space& operator=(Space& s)

void debug_out(ostream& c, int indent)

void heavy_debug_out(ostream& c, int indent)

Standard housekeeping functions. The function debug out() does
not print out member objects that themselves contain Space member
objects (which avoids infinite recursion).

2.2 Member Functions for VSpace

Constructors

VSpace(Space& s)

Used to downcast a general space to a vector space. Only succeeds
if the general space is holding a vector space.

VSpace(char* namein, int n, Boolean eflag)

Builds a vector space of dimension n, with debug name in buffer
namein. The space creates its own copy of the name. If the flag
eflag is TRUE, the space will be Euclidean.

VSpace(char* namein, Boolean eflag, ASpace& a, PSpace& p)

9



Builds a vector space, linking it to the spaces a and p to create the
core of a six-space set. The space creates its own copy of the debug
name. This space is Euclidean if eflag is TRUE.

VSpace(char* namein, Boolean eflag, Space& ins)

Builds a vector space, linking it to the space ins, which is either
an affine or projective space. The space creates its own copy of the
debug name. This space is Euclidean if eflag is TRUE.

VSpace(char* namein, SpaceList& t, Boolean eflag)

Builds a cartesian product vector space, using the spaces in the list
t as component spaces. The space creates its own copy of the debug
name. If the flag eflag is TRUE, the space will be Euclidean.

Manual Stitching Operations

Space SetSpace(Space& s, Map& m)

See the description given in Section ?? for the base class (this is
implemented as a virtual function).

Miscellaneous

VSpace(void)

VSpace(VSpace& v)

VSpace& operator=(VSpace& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

2.3 Member Functions for ASpace

Constructors

ASpace(Space& s)

Used to downcast a general space to an affine space. Only succeeds
if the general space is holding an affine space.

ASpace(char* namein, int n, Boolean eflag)

Builds an affine space of dimension n, with debug name in buffer
namein. The space creates its own copy of the name. If eflag is
TRUE, the space will be Euclidean.

ASpace(char* namein, Boolean eflag, VSpace& v, PSpace& p)

10



Builds an affine space, linking it to the spaces v and p to create the
core of a six-space set. The space creates its own copy of the debug
name. This space is Euclidean if eflag is TRUE.

ASpace(char* namein, Boolean eflag, Space& ins)

Builds an affine space, linking it to the space ins, which is either
a vector or projective space. The space creates its own copy of the
debug name. This space is Euclidean if eflag is TRUE.

ASpace(char* namein, SpaceList& t, Boolean eflag)

Builds a cartesian product affine space, using the spaces in the list t
as component spaces. The space creates its own copy of the debug
name. If the flag eflag is TRUE, the space will be Euclidean.

Manual Stitching Operations

Space SetSpace(Space& s, Map& m)

See the description given in Section ?? for the base class (this is
implemented as a virtual function).

Miscellaneous

ASpace(void)

ASpace(ASpace& s)

ASpace& operator=(ASpace& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

2.4 Member Functions for PSpace

Constructors

PSpace(Space& s)

Used to downcast a general space to an affine space. Only succeeds
if the general space is holding a projective space.

PSpace(char* namein, int n)

Builds a projective space of dimension n, with debug name in buffer
namein. The space creates its own copy of the name.

PSpace(char* namein, VSpace& v, ASpace& a)

11



Builds a projective space, linking it to the spaces v and a to create
the core of a six-space set. The space creates its own copy of the
debug name.

PSpace(char* namein, Space& v)

Builds a projective space, linking it to the space v, which is either a
vector or affine space. The space creates its own copy of the debug
name.

Manual Stitching Operations

Space SetSpace(Space& s, Map& m)

See the description given in Section ?? for the base class (this is
implemented as a virtual function).

Miscellaneous

PSpace(void)

PSpace(PSpace& v)

PSpace& operator=(PSpace& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

3 SubSet

3.1 Member Functions for the Base Class SubSet

Interrogation Functions

char* Name(char* buf)

Fills in the specified buffer with the debug name of the subset, and
returns a pointer to the buffer.

int Dim(void)

Returns the dimension of the subset. If the subset is projective with
removed points, this dimension reflects the dimension of the related
primitive geometric form (e.g. a projective plane with a removed
point has a dimension of one).

SubSetType Holds(void)

Returns the type of subset currently held by the subset.

12



Boolean IsIn(GeOb& g)

Returns TRUE if and only if the geometric object g is in the subset.

Space EmbeddingSpace(void)

Returns the space that contains the subset.

Boolean IsSubset(SubSet& s)

Returns TRUE if and only if the subset s is a subset of this subset.
Not valid for projective subsets with removed points. Will return
FALSE if the subset types do not match.

Boolean IsFullSpace(void)

Returns TRUE if and only if this subset contains all the geometric
objects in the embedding space.

Boolean HasRemovedPoints(void)

Only valid if the subset is a projective subset. Returns TRUE if and
only if the subset has a set of removed points (i.e. it is the domain
of a noninvertible projective map).

GeObList AtInfinity(void)

Returns a list of points that span the set of points at infinity. Only
valid if the subset is an affine subset in a projective space.

VSubSet TangentSub(void)

Returns the subset of associated tangent vectors. Only valid if the
subset is an affine subset in an affine or vector space.

GeObType Accepts(void)

Returns the type of geometric object that is contained in the subset
(e.g. affine vector equivalence classes in a projective subset defined
in a tangent space).

Miscellaneous

SubSet(void)

SubSet(SubSet& s)

SubSet& operator=(SubSet& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

13



3.2 Member Functions for VSubSet

Constructors

VSubSet(char* namein, VSpace& s, GeObList& v)

Builds a vector subset of vector space s, with debug name in buffer
namein. The subset creates its own copy of the name. The geomet-
ric objects in list v, after mapping into space s if necessary, span the
subset.

VSubSet(SubSet& s)

Used to downcast a general subset to a vector subset. Only succeeds
if the general subset is holding a vector subset.

Miscellaneous

VSubSet(void)

VSubSet(VSubSet& s)

VSubSet& operator=(VSubSet& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

3.3 Member Functions for ASubSet

Constructors

ASubSet(char* namein, Space& s, GeObList& v)

Builds an affine subset of vector or affine space s, with debug name
in buffer namein. The subset creates its own copy of the name. The
geometric objects in list v, after mapping into space s if necessary,
span the subset.

ASubSet(char* namein, PSpace& s, GeOb& v, GeObList& inf)

Builds an affine subset of projective space s, with debug name in
buffer namein. The subset creates its own copy of the name. The
geometric objects v and in list inf , after mapping into space s if
necessary, define a projective subspace. The subsequent subtraction
of the points at infinity specified by list inf creates an affine subset.

ASubSet(SubSet& s)

Used to downcast a general subset to an affine subset. Only succeeds
if the general subset is holding an affine subset.

14



Miscellaneous

ASubSet(void)

ASubSet(ASubSet& s)

ASubSet& operator=(ASubSet& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

3.4 Member Functions for PSubSet

Constructors

PSubSet(char* namein, Space& s, GeObList& v)

Builds a projective subset of space s, with debug name in buffer
namein. The subset creates its own copy of the name. The geomet-
ric objects in list v, after mapping into space s if necessary, span the
subset.

PSubSet(char* namein, Space& s, GeObList& bp, GeObList& v)

Builds a projective subset of space s, with debug name in buffer
namein. The subset creates its own copy of the name. The geomet-
ric objects in lists bp and v, after mapping into space s if necessary,
span some projective subspace. The objects in bp are base points
that span the set of removed points that are extracted from the
subset. This constructor is used to build domain subsets for nonin-
vertible projective maps.

PSubSet(SubSet& s)

Used to downcast a general subset to a projective subset. Only
succeeds if the general subset is holding a projective subset.

Miscellaneous

PSubSet(void)

PSubSet(PSubSet& s)

PSubSet& operator=(PSubSet& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

15



4 Basis

4.1 Member Functions for the Base Class Basis

Interrogation Functions

Space SpaceOf(void)

Returns the space that contains the basis.

BasisType Holds(void)

Returns the type of basis currently held by the basis.

char* Name(char* buf)

Fills in the specified buffer with the debug name of the basis, and
returns a pointer to the buffer.

GeOb operator[](int n)

Returns the nth object from the basis, using zero-based indexing.
For k-dimensional frames, the point is the kth object.

ScalarList operator()(GeOb& v)

Returns the coordinates of the object v with respect to this basis.
The object is first mapped into the space of the basis, if necessary.

VBasis Dual(void)

Returns the vector basis that is the dual of this basis. Only valid
for vector bases.

Miscellaneous

Basis(void)

Basis(Basis& b)

Basis& operator=(Basis& b)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

4.2 Member Functions for Simplex

Constructors

Simplex(char* namein, GeOb& t)

16



If t is a point tuple from a cartesian product affine space A× . . .×A,
this builds a simplex for A from the tuple members. The simplex
creates its own copy of the debug name given in the buffer namein.

Simplex(char* namein, ASpace& ins, GeObList& t)

Builds a simplex for the affine space ins, using the objects in the list
t, after they are mapped into ins if necessary. The simplex creates
its own copy of the debug name given in the buffer namein.

Simplex(Basis& f)

Used to downcast a general basis to a simplex. Only succeeds if the
general basis is holding either a simplex or a frame; the latter can
be automatically cast to a simplex.

Miscellaneous

Simplex(void)

Simplex(Simplex& b)

Simplex& operator=(Simplex& b)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

4.3 Member Functions for Frame

Constructors

Frame(Basis& f)

Used to downcast a general basis to a frame. Only succeeds if the
general basis is holding a frame.

Frame(char* namein, ASpace& ins, GeObList& t)

Builds a frame for the affine space ins, using the objects in the list
t, after they are mapped into ins (or its tangent space) if necessary.
The frame creates its own copy of the debug name given in the
buffer namein. The last object in the list t is the point member of
the frame.

Frame(Simplex& b, int n)

Builds a frame from the simplex b. The nth point in the simplex
becomes the point member of the frame.

17



Miscellaneous

Frame(void)

Frame(Frame& f)

Frame& operator=(Frame& f)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

4.4 Member Functions for VBasis

Constructors

VBasis(char* namein, GeOb& t)

If t is a vector tuple from a cartesian product vector space, this
builds a vector basis from the tuple members. The tuple can be a
mixture of vectors from a linearization space and affine vectors from
a tangent space; the tuple elements are mapped into the appropriate
space as needed. The basis creates its own copy of the debug name
given in the buffer namein.

VBasis(char* name, VSpace& ins, GeObList& t)

Builds a vector basis for the vector space ins, using the objects in
the list t, after they are mapped into ins if necessary. The basis
creates its own copy of the debug name given in the buffer namein.

VBasis(Basis& f)

Used to downcast a general basis to a vector basis. Only succeeds if
the general basis is holding a vector basis.

Miscellaneous

VBasis(void)

VBasis(VBasis& v)

VBasis& operator=(VBasis& b)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

18



4.5 Member Functions for HFrame

Constructors

HFrame(char* namein, PSpace& ins, GeObList& t)

Builds a projective frame for the projective space ins, using the
objects in the list t, after they are mapped into ins if necessary.
The projective frame creates its own copy of the debug name given
in the buffer namein.

HFrame(Basis& f)

Used to downcast a general basis to a projective frame. Only suc-
ceeds if the general basis is holding a projective frame.

Miscellaneous

HFrame(void)

HFrame(HFrame& h)

HFrame& operator=(HFrame& h)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5 GeOb

5.1 Member Functions for the Base Class GeOb

Typecasting (Including Single-Argument Constructors)

GeOb(MultiMap& mp)

If the multimap mp has zero arguments, it is cast into a geometric
object in its range space. If it is instead a one-argument linear map
into the space “Reals”, it is cast into a vector (or affine vector) in
the dual space of the domain.

GeOb(Map& mp)

If the domain subset of the map mp is a full subset of a vector space,
and the range is the space “Reals”, the map is cast into a vector (or
affine vector) in the dual space of the domain.

GeOb(Scalar v)

The scalar v is automatically cast into a vector in the predefined
space “Reals”, using the standard basis “1”.

19



Scalar ToScalar(void)

If this GeOb is a vector in the space “Reals”, it is cast into a scalar,
using the standard basis “1”. This casting must be done explicitly
(this avoids compilation ambiguity difficulties).

Interrogation Functions

Space SpaceOf(void)

Returns the space containing the geometric object.

GeObType Holds(void)

Returns the type of geometric object currently held by the GeOb.

Boolean CanMapTo(GeObType t)

Returns TRUE if and only if the geometric object can be successfully
mapped into an object of type t, using the standard mappings.

Boolean IsZeroVector(void)

Returns TRUE if and only if the object is a zero vector.

GeOb operator[](int n)

Returns the nth element of a vector or point tuple in a cartesian
product space, using zero-based indexing. If this GeOb is not a
vector, affine vector, or affine point, it is first mapped to a vector.

GeObList TupleElements(void)

Returns a list of all the elements of a vector or point tuple in a
cartesian product space. If this GeOb is not a vector, affine vector,
or affine point, it is first mapped to a vector.

Operations

Algebraic operations are implemented as friends due to the binary nature of the
operators. Note that these operators will work with vector (and affine vector)
equivalence class arguments. This is included for completeness; the randomiza-
tion that occurs in mappings from vector (and affine vector) equivalence classes
makes it unlikely that this feature will be useful.

friend GeOb operator-(GeOb& th)

If the object is a vector or affine vector, this negates it. Otherwise,
it is mapped into a vector in the linearization space (or into a tan-
gent space vector, if it is an affine vector equivalence class) prior to
negation.

20



friend GeOb operator+(GeOb& th, GeOb& g)

friend GeOb operator-(GeOb& th, GeOb& g)

If the objects are vectors or affine vectors in the same space, these
operators add or subtract them. Otherwise, the objects are first
mapped into vectors in the linearization space (or into tangent space
vectors, if the operation involves just affine vector equivalence classes
and/or affine vectors).

friend GeOb operator*(GeOb& th, GeOb& g)

This operation of scalar multiplication is only legal if one of the
geometric objects is a vector in the space “Reals”. If the other
object is not a vector or affine vector, it is first mapped into a vector
in the linearization space (or into a tangent space vector, if it is
an affine vector equivalence class) before the scalar multiplication is
carried out.

friend GeOb operator/(GeOb& th, GeOb& g)

Just like the scalar multiplication operation described above, except
that the second operand g is required to be a nonzero vector in the
space “Reals”.

Scalar Apply(GeOb& a)

Treat this GeOb as a linear functional and apply it to the object a
in its dual space. One of the objects must be in either the lineariza-
tion dual space or tangent dual space (if that object is a vector
equivalence class, it is mapped to a vector in the space). The other
object is first mapped, if necessary, to a vector or affine vector in
the corresponding primal space.

GeOb Dual(void)

If this GeOb is a vector or affine vector, return the dual vector.
Otherwise, it is mapped into a vector in the linearization space (or
into a tangent space vector, if it is an affine vector equivalence class)
prior to taking the dual. Only valid if the space is Euclidean.

GeOb MapTo(GeObType t)

Apply the standard mappings to this GeOb to convert it to a GeOb
of type t, if possible.

GeOb SetTupleElement(int n, GeOb& g)

21



If this GeOb is not a vector, affine vector, or affine point, it is first
mapped to a vector. This function returns a tuple that has the nth

element of this tuple changed to g, using zero-based indexing. The
object g is first mapped into the corresponding space component of
the cartesian product space, if necessary.

friend PPoint CrossRatio(AugScalar v, GeObList& g)

The list g must consist of three objects that can be cast into collinear
points in the projective completion space. Given the list of points
(A,B,C), and the cross ratio v = (A,B;C,D), this routine returns
the projective point D.

friend AugScalar CrossRatioCalc(GeObList& g)

The list g must consist of four objects that can be cast into collinear
points in the projective completion space, where at least three are
distinct. Given the list of points (A,B,C,D), this function returns
the cross ratio (A,B;C,D).

Miscellaneous

GeOb(void)

GeOb(GeOb& g)

GeOb& operator=(GeOb& g)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5.2 Member Functions for Vector

Constructors

Vector(VBasis& b, ScalarList& a)

This creates a vector in the space containing the basis b with the
coordinates given in the list of scalars.

Vector(VSpace& ins, GeObList& s)

Vector(VSpace& ins, GeOb& v1, GeOb& v2)

Vector(VSpace& ins, GeOb& v1, GeOb& v2, GeOb& v3)

These constructors build a vector tuple in the specified cartesian
product vector space ins. The elements of the tuple are either given
by the objects in the list s (for the first constructor), or individually
(the other two constructors). The elements are first cast into vectors
or affine vectors, if necessary.

22



Typecasting (Including Single-Argument Constructors)

Vector(GeOb& a)

Used to downcast an arbitrary geometric object to a vector. Stan-
dard maps will be used to map the GeOb to a vector; this will
succeed if the mapping succeeds.

Vector(MultiMap& m)

Vector(Map& m)

Vector(Scalar s)

See the descriptions given in Section ?? for the GeOb
single-argument constructors.

Mapping

Boolean CanMapTo(GeObType t)

GeOb MapTo(GeObType t)

See the description given in Section ?? for the base class (these are
implemented as virtual functions).

Miscellaneous

Vector(void)

Vector(Vector& v)

Vector& operator=(Vector& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5.3 Member Functions for AVector

Constructors

AVector(Basis& b, ScalarList& a)

This creates an affine vector specified by the coordinates a with
respect to the basis b. The basis can either be a vector basis for the
tangent space, or a simplex or frame for the associated affine space.

AVector(VSpace& ins, GeObList& s)

AVector(VSpace& ins, GeOb& v1, GeOb& v2)

AVector(VSpace& ins, GeOb& v1, GeOb& v2, GeOb& v3)

23



These constructors build an affine vector tuple in the specified carte-
sian product vector space ins. The elements of the tuple are either
given by the objects in the list s (for the first constructor), or in-
dividually (the other two constructors). The elements are first cast
into affine vectors, if necessary.

Typecasting (Including Single-Argument Constructors)

AVector(GeOb& a)

Used to convert an arbitrary geometric object to an affine vector.
Standard maps will be used to map the GeOb to an affine vector;
this will succeed if the mapping succeeds.

AVector(MultiMap& m)

AVector(Map& m)

See the descriptions given in Section ?? for the GeOb
single-argument constructors.

Mapping

Boolean CanMapTo(GeObType t)

GeOb MapTo(GeObType t)

See the description given in Section ?? for the base class (these are
implemented as virtual functions).

Miscellaneous

AVector(void)

AVector(AVector& v)

AVector& operator=(AVector& g)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5.4 Member Functions for VectorEC

Typecasting (Including Single-Argument Constructors)

VectorEC(GeOb& a)

Used to convert an arbitrary geometric object to a vector equivalence
class. Standard maps will be used to map the GeOb to a vector
equivalence class; this will succeed if the mapping succeeds.

24



VectorEC(MultiMap& m)

VectorEC(Map& m)

See the descriptions given in Section ?? for the GeOb
single-argument constructors. If m can be cast into a vector, these
constructors will then attempt to convert it to a vector equivalence
class.

Mapping

Boolean CanMapTo(GeObType t)

GeOb MapTo(GeObType t)

See the description given in Section ?? for the base class (these are
implemented as virtual functions).

Miscellaneous

VectorEC(void)

VectorEC(VectorEC& v)

VectorEC& operator=(VectorEC& g)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5.5 Member Functions for AVectorEC

Typecasting (Including Single-Argument Constructors)

AVectorEC(GeOb& a)

Used to convert an arbitrary geometric object to an affine vector
equivalence class. Standard maps will be used to map the GeOb
to a affine vector equivalence class; this will succeed if the mapping
succeeds.

AVectorEC(MultiMap& m)

AVectorEC(Map& m)

See the descriptions given in Section ?? for the GeOb
single-argument constructors. If m can be cast into an affine vector,
these constructors will then attempt to map it to an affine vector
equivalence class.

25



Mapping

Boolean CanMapTo(GeObType t)

GeOb MapTo(GeObType t)

See the description given in Section ?? for the base class (these are
implemented as virtual functions).

Miscellaneous

AVectorEC(void)

AVectorEC(AVectorEC& v)

AVectorEC& operator=(AVectorEC& g)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5.6 Member Functions for APoint

Constructors

APoint(Basis& s, ScalarList& a)

This creates an affine point specified by the coordinates a with re-
spect to the basis s. The basis can either be a simplex or a frame.

APoint(ASpace& ins, GeObList& s)

APoint(ASpace& ins, GeOb& p1, GeOb& p2)

APoint(ASpace& ins, GeOb& p1, GeOb& p2, GeOb& p3)

These constructors build a point tuple in the specified cartesian
product affine space ins. The elements of the tuple are either given
by the objects in the list s (for the first constructor), or individually
(the other three constructors). The elements are first cast into affine
points, if necessary.

Typecasting (Including Single-Argument Constructors)

APoint(GeOb& a)

Used to convert an arbitrary geometric object to an affine point.
Standard maps will be used to map the GeOb to an affine point;
this will succeed if the mapping succeeds.

APoint(MultiMap& m)

APoint(Map& m)

26



See the descriptions given in Section ?? for the GeOb
single-argument constructors. If m can be cast into some sort of
geometric object, these constructors will then attempt to map it to
an affine point using standard maps.

Mapping

Boolean CanMapTo(GeObType t)

GeOb MapTo(GeObType t)

See the description given in Section ?? for the base class (these are
implemented as virtual functions).

Miscellaneous

APoint(void)

APoint(APoint& p)

APoint& operator=(APoint& g)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

5.7 Member Functions for PPoint

Constructors

PPoint(HFrame& s, ScalarList& a)

This creates a projective point specified by the homogeneous coor-
dinates a with respect to the projective frame s.

Typecasting (Including Single-Argument Constructors)

PPoint(GeOb& a)

Used to convert an arbitrary geometric object to a projective point.
Standard maps will be used to map the GeOb to a projective point;
this will succeed if the mapping succeeds.

PPoint(MultiMap& m)

PPoint(Map& m)

See the descriptions given in Section ?? for the GeOb
single-argument constructors. If m can be cast into some sort of
geometric object, these constructors will then attempt to map it to
a projective point using standard maps.

27



Mapping

Boolean CanMapTo(GeObType t)

GeOb MapTo(GeObType t)

See the description given in Section ?? for the base class (these are
implemented as virtual functions).

Miscellaneous

PPoint(void)

PPoint(PPoint& v)

PPoint& operator=(PPoint& g)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

6 Map

6.1 Member Functions for the Base Class Map

Typecasting (Including Single-Argument Constructors)

Map(MultiMap& m)

If the multimap m has a simple vector or affine space as a domain
(i.e. the domain cartesian product space has only one component
space), this routine will convert it into a simple map.

Map(GeOb& g)

If the argument g is a vector or affine vector (or can be converted
to a vector), the routine converts it to a map from the dual space of
the vector to the reals.

Interrogation Functions

SubSet Range(void)

Returns the subset that is the range of the map.

SubSet Domain(void)

Returns the subset that is the domain of the map.

MapType Holds(void)

Returns the type of map currently held by the map.

Boolean Invertible(void)

Returns TRUE if and only if the map is invertible.

28



Functions to Apply Maps

GeOb operator()(GeOb& v)

Apply this map to the geometric object v and return the image in
the range. If the argument is not in the domain space, an attempt
is made to map it using the standard mappings.

Functions that Compose and Invert Maps

Map Inv(void)

Inverts this map. Only legal if the map is invertible.

Map Compose(Map& m)

Composes this map with the map m and returns the result. The
range of map m, which is applied first, must be a subset of the
domain of this map. Only valid if the two maps are the same type
(e.g. both affine).

ProjectiveMap ComposeProj(Map& m)

Compose affine and projective maps to form a projective map. Any
affine maps are first converted to projective maps using the following
InducedProjective() function.

Functions to Obtain Induced Maps

ProjectiveMap InducedProjective(void)

Only valid if this map is an invertible affine map between full affine
subsets of affine spaces. This routine returns the corresponding pro-
jective map between the neighboring projective completion spaces.

LinearMap InducedLinear(void)

Only valid if this map is an affine map between full affine subsets
of affine spaces. This routine returns the corresponding linear map
between the neighboring linearization spaces.

LinearMap Trans(void)

Returns the transpose of this map. Only valid if this map is a linear
map between full linear subsets of vector spaces.

LinearMap AssocLinear(void)

If this is an affine map from an affine subset of an affine space to an
affine or linear subset of a linear or affine space, this routine returns
the map induced on the tangent space of the domain space.

29



Vector AssocDualVector(void)

If this map is an affine functional (i.e. an affine map into the reals),
this function returns the vector in the dual of the tangent space
corresponding to the associated linear map.

Miscellaneous

Map(void)

Map(Map& m)

Map& operator=(Map& m)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

6.2 Member Functions for LinearMap

Constructors

LinearMap(VBasis& b1, VBasis& b2)

Builds an invertible linear map between two vector spaces that car-
ries the vectors in basis b1 to the vectors in b2.

LinearMap(VBasis& b, SubSet& s, GeObList& v)

More general linear map creation routine. The domain of the map
is a whole vector space, but the range can be a linear subset of a
vector space. The objects in the list v are the images of the vectors
in basis b; they are first mapped into the space of s, if necessary.
The image objects do not have to be independent or span the subset
s.

LinearMap(SubSet& s, GeObList& v, VBasis& b)

Similar to the previous linear map creation routine, except that the
range of the map is a whole vector space, while the domain can be
a linear subset of a vector space. The objects in the list v are the
preimages of the vectors in basis b; they are first mapped into the
space of s, if necessary. In this case, the image objects in v must be
independent and span the subset s.

LinearMap(SubSet& s1, GeObList& v1, SubSet& s2, GeObList& v2)

Most general linear map creation routine, where both the range and
domains are linear subsets of a vector space. The objects in the list
v1 map to the objects in list v2; standard maps are first applied to
the objects in the lists if necessary. The image objects in v1 must
be independent and span the subset s1.

30



Typecasting (Including Single-Argument Constructors)

LinearMap(MultiMap& m)

LinearMap(GeOb& g)

See the descriptions given in Section ?? for the Map single-argument
constructors.

LinearMap(Map& m)

Used to downcast a general map to a linear map. Only succeeds if
the general map is holding a linear map.

Miscellaneous

LinearMap(void)

LinearMap(LinearMap& m)

LinearMap& operator=(LinearMap& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

6.3 Member Functions for AffineMap

Constructors

AffineMap(Basis& b1, Basis& b2)

Builds an invertible affine map between two affine spaces that carries
the objects in basis b1 to the objects in b2. The bases can be either
both simplices or both frames.

AffineMap(Simplex& b, SubSet& s, GeObList& v)

More general linear map creation routine. The domain of the map is
a whole affine space, but the range can be either a linear subset of a
vector space or an affine subset. Note that the basis for the domain
space is restricted to be a simplex. The objects in the list v are the
images of the objects in basis b; they are first mapped into the space
of s, if necessary. The image objects do not have to be independent
or span the subset s.

AffineMap(SubSet& s, GeObList& v, Simplex& b)

31



Similar to the previous affine map creation routine, except that the
range of the map is a whole affine space, while the domain can be
an affine subset. The objects in the list v are the preimages of the
points in simplex b; they are first mapped into the space of s, if
necessary. In this case, the image objects in v must be independent
and span the subset s.

AffineMap(SubSet& s1, GeObList& v1, SubSet& s2, GeObList& v2)

Most general affine map creation routine, where the domain is some
affine subset and the range is either a linear or affine subset. The
objects in the list v1 map to the objects in list v2; standard maps
are first applied to the objects in the lists if necessary. The image
objects in v1 must be independent and span the subset s1.

Typecasting (Including Single-Argument Constructors)

AffineMap(MultiMap& m)

If the multimap m has an atomic affine space as a domain (i.e. the
domain cartesian product space has only one component space), this
routine will convert it into a simple affine map.

AffineMap(Map& m)

Used to downcast a general map to an affine map. Only succeeds if
the general map is holding an affine map.

Miscellaneous

AffineMap(void)

AffineMap(AffineMap& m)

AffineMap& operator=(AffineMap& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

6.4 Member Functions for ProjectiveMap

Constructors

ProjectiveMap(HFrame& b1, HFrame& b2)

Builds an invertible projective map between two projective spaces
that carries the projective points in the projective frame b1 to the
projective points in b2.

32



ProjectiveMap(HFrame& b, SubSet& s, GeObList& v)

More general projective map creation routine, used to build invert-
ible maps from a whole projective space to a projective subset. Since
the only allowable method for creating noninvertible maps is to have
a domain subspace with removed points, this routine requires the im-
age objects v to be independent and span s. Note that s could be
a projective subset of a vector space. The range subset s must be
projective and cannot have removed points. The objects in the list
v are the images of the objects in the frame b; they are first mapped
into the space of s, if necessary.

ProjectiveMap(SubSet& s, GeObList& v, HFrame& b)

This constructor is used to build a projective map from a projective
subset to a projective space. If the domain subset has removed
points, this map will not be invertible. The objects in the list v are
the preimages of the objects in the frame b; they are first mapped
into the space of s, if necessary. The objects in v must be in general
position and span the subset s.

ProjectiveMap(SubSet& s1, GeObList& v1, SubSet& s2, GeObList& v2)

Most general projective map creation routine, where the domain and
range are projective subsets. If the domain subset s1 has removed
points, this map will not be invertible. The range subset s2 cannot
have removed points. The objects in the list v1 map to the objects
in list v2; standard maps are first applied to the objects in the lists if
necessary. The objects in both v1 and v2 must be in general position
and span their respective subsets s1 and s2.

Typecasting (Including Single-Argument Constructors)

ProjectiveMap(Map& m)

Used to downcast a general map to a projective map. Only succeeds
if the general map is holding a projective map.

Miscellaneous

ProjectiveMap(void)

ProjectiveMap(ProjectiveMap& m)

ProjectiveMap& operator=(ProjectiveMap& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

33



7 MultiMap

7.1 Member Functions for the Base Class MultiMap

Typecasting (Including Single-Argument Constructors)

Scalar ToScalar(void)

If this multimap has zero arguments, and the range space is the space
“Reals”, this routine converts it to a scalar, using the standard basis
of “1”. Note that this conversion must be done explicitly.

MultiMap(Map& m)

If the map m is linear, or is an affine map from an affine space, and
if the domain is a full space, this routine casts it into a multimap.

MultiMap(GeOb& g)

If the argument g is a vector or affine vector (or can be converted
to a vector), this routine casts it to a map from the dual space of
the vector to the space “Reals”, which is then in turn cast to a
multimap. Note that there is no support for casting a GeOb into a
zero-argument multimap.

Interrogation Functions

Space RangeSpace(void)

Returns the range space of this multimap.

Space DomainSpace(void)

Returns the domain space of this multimap.

Boolean FullyEvaluated(void)

Returns TRUE if and only if this multimap has been fully evaluated
(i.e. it is a zero-argument map).

MultiType Holds(void)

Returns the type of multimap currently held by this multimap.

Functions to Apply Maps and do Partial Evaluation

GeOb operator()(GeOb& t)

Apply the multimap to the argument t, which is a tuple from the
cartesian product domain space, and return the image in the range
space.

34



MultiMap operator()(GeObList& t)

Apply the multimap to the list of arguments t where the nth element
of the list is a member of the nth component space of the cartesian
product domain space; standard maps are first applied to the ar-
guments as needed. A list element that is a NULL GEOB causes
the routine to skip evaluation of the corresponding argument, per-
mitting partial evaluation of the map. The routine returns the new
multimap that results from this evaluation. This routine is not typi-
cally recommended for doing partial evaluation, as the system must
create a new space to serve as the domain of the partially evaluated
map (see the next function).

MultiMap operator()(Space& newdom, GeObList& t)

Like the above routine, but saves the system from having to create
a new space. The space newdom is used as the domain for the
partially evaluated multimap that is returned.

Miscellaneous

MultiMap(void)

MultiMap(MultiMap& v)

MultiMap& operator=(MultiMap& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

7.2 Member Functions for MLM

Constructors

MLM(VSpace& s1, IntList& symmetry, BasisList& bases,

VSpace& s2, GeObList& vectors)

Creates a multilinear map from the cartesian product domain space
s1 to the range space s2. The list of integers symmetry specifies the
symmetry characteristics of the map. The basis list bases specifies
one basis for each symmetry group in the domain, while the list
vectors give the images in the range. See the thesis writeup for
more detailed information and examples.

35



Typecasting (Including Single-Argument Constructors)

MLM(MultiMap& s)

Used to downcast a general multimap to a multilinear map. Only
succeeds if the general multimap is holding a multilinear map.

MLM(Map& m)

MLM(GeOb& g)

See the descriptions given in Section ?? for the MultiMap single-
argument constructors.

Miscellaneous

MLM(void)

MLM(MLM& m)

MLM& operator=(MLM& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

7.3 Member Functions for MAM

Constructors

MAM(ASpace& s1, IntList& symmetry, BasisList& simplices,

Space& s2, GeObList& images)

Creates a multiaffine map from the cartesian product domain space
s1 to the range space s2. The list of integers symmetry specifies the
symmetry characteristics of the map. The simplex list simplices

specifies one simplex for each symmetry group in the domain, while
the list images give the images in the range. See the thesis writeup
for more detailed information and examples.

Typecasting (Including Single-Argument Constructors)

MAM(MultiMap& s)

Used to downcast a general multimap to a multiaffine map. Only
succeeds if the general multimap is holding a multiaffine map.

MAM(Map& m)

See the description given in Section ?? for the MultiMap single-
argument constructors.

36



Miscellaneous

MAM(void)

MAM(MAM& m)

MAM& operator=(MAM& s)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

8 AugScalar

8.1 Member Functions for the Base Class AugScalar

Constructors

AugScalar(Infnum n)

Creates an augmented scalar with the value infinity when the argu-
ment n is equal to “INFINITY”. CAUTION: INFINITY is imple-
mented as an enumerated data type with the arbitrary integer value
-23457.

Typecasting (Including Single-Argument Constructors)

AugScalar(Scalar v)

Creates an augmented scalar of value v.

operator Scalar()

Used for casting augmented scalars to scalars automatically.

Interrogation Functions

Scalar Value(void)

Return the value of the augmented scalar. Only valid if it is not
equal to infinity.

Boolean IsInfinity(void)

Returns TRUE if and only if the augmented scalar has the value
INFINITY.

37



Miscellaneous

AugScalar(void)

AugScalar(AugScalar& a)

AugScalar& operator=(AugScalar& a)

void debug_out(ostream& c, int indent)

Standard housekeeping functions.

9 Miscellaneous

9.1 Object and ErrorHandler Classes

To facilitate error reporting, every class in this package (except the error han-
dler) is a subclass of the Object class. Every object knows how to print itself
out, using the virtual function

void debug_out(ostream& c, int indent)

which prints out the contents of the object on output stream c. The printout
is indented indent characters. The stream output operator “<<” is also defined
for objects.

The error handler (there is a single predefined instance of the error handler
class, “errh”, provided with the system) is used to print out error messages and
terminate the program. Member functions for the handler are of the form

void ErrorExit(char* errloc, char* descript, Object& o1)

where errloc contains the function signature for where the error occurred,
descript gives a description for the error, and o1 is an object that will have
its contents printed out. Member functions accepting from zero to five objects
are provided. A special class ErrVal is also provided, which allows scalar and
integer values to be passed to the error handler as Objects. ErrVal constructors
are

ErrVal(char* message, Scalar val)

ErrVal(char* message, int val)

which permit values to be tagged with an explanatory message. There is also a
special class ErrType, which allows a value of an enumerated types described in
Section ?? to be passed to the error handler as well. To construct an ErrType,
the user specifies a message, the value of the enumerated type, and a key to
what the enumerated type is:

ErrVal(char* message, int val, EnumSet s)

38



9.2 Matrix and RowMatrix Classes

The geometry package is built on top of a matrix package that implements the
Matrix and RowMatrix classes; a matrix is built up of row matrices. Since it is
not intended for the user to be using this underlying support layer, a detailed
description of the package will not be provided.

9.3 Booleans and Scalars

Booleans are implemented in this package as an enumerated data type that
takes on the values TRUE and FALSE. Scalars are implemented as doubles.

9.4 Enumerated Types

Several enumerated data types are defined in the system. These types are:

SRel: LINEARIZATION, AFFINE, TANGENT, PROJECT COMP,
LIN DUAL, TANG DUAL, NO RELATION, SAME SPACE

SpaceType: NULL SPACE, VEC SPACE, AFF SPACE, PROJ SPACE,
ANY SPACE

BasisType: NULL BASIS, SIMPLEX, FRAME, VBASIS, HFRAME,
ANY BASIS

GeObType: NULL GEOB, VECTOR, AFF POINT, AFF VECTOR,
VEC EC, AFF VEC EC, PROJ POINT, ANY GEOB

MapType: NULL MAP, LIN MAP, AFF MAP, PROJ MAP, ANY MAP

MultiType: NULL MULTI, MULTI LINEAR, MULTI AFFINE,
ANY MULTI

SubSetType: NULL SUBSET, LINEAR SUBSET, AFFINE SUBSET, PRO-
JECTIVE SUBSET, ANY SUBSET

EnumSet: SPACETYPES, BASISTYPES, GEOBTYPES, MAPTYPES,
MULTITYPES, SUBSETTYPES, SRELTYPES

Probably the most important type for the user to be familiar with is the SRel
type, which is used to navigate around the six-space set.

Output functions have been implemented for each data type (except Enum-
Set) to facilitate easy output for debugging purposes. For example:

ostream& GeObTypeOut(ostream& c, GeObType t)

39


